
1) We can find the inverse function, by following some steps. So let's start with swapping the variables this way:
![\begin{gathered} f(x)=\sqrt[3]{x-1}+4 \\ y=\sqrt[3]{x-1}+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oh38ecnjy8g6vxsongymj2droht98cu3pj.png)
2) Now let's isolate that x variable getting rid of that cubic root:
![\begin{gathered} x=\sqrt[3]{y-1}+4 \\ x-4=\sqrt[3]{y-1} \\ (x-4)^3=(\sqrt[3]{y-1})^3 \\ (x-4)^3=y-1 \\ y=(x-4)^3+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/azlrcwl47r2a8q1eqv9fo8pppvn86dky1z.png)
Note that when we isolate the y on the left we had to adjust the sign dividing it by -1, to get y, not -y.