Consider the circle
we have the intersecting chords theorem, which states that
![a\cdot b=c\cdot d](https://img.qammunity.org/2023/formulas/mathematics/college/q2i5ra8nut3yxf3wed03g2he4s9r920wra.png)
In our case we have a=x, b=12, c=6 and d=x+4. So we have
![12\cdot x=6\cdot(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/b6gifud7uyn5vdddphp0gb0docnm3ml5lj.png)
distributing on the right side we get
![12\cdot x=6x+6\cdot4=6x+24](https://img.qammunity.org/2023/formulas/mathematics/college/8did4yif9t3abkbvtt6xg8jbgkc9kln5sz.png)
Subtracting 6x on both sides, we get
![24=12x\text{ -6x=6x}](https://img.qammunity.org/2023/formulas/mathematics/college/q21gfp0sriaey1lzsx4mks11v9vyf7iaww.png)
Dividing boht sides by 6, we get
![x=(24)/(6)=4](https://img.qammunity.org/2023/formulas/mathematics/college/bkx0l2q5nwxudr8jvht1cym1m2zgqlje3v.png)
So, the value of x is 4. Now we replace this value to find the length of each chord, so we have
x---->4
12---->12
x+4----->4+4=8
6----->6