Let's draw a diagram of this problem.
ABC is the shore.
D to A is 1 miles (given).
A to C is 4 miles (given).
If we let AB = x, then BC would be "4 - x".
Now, using pythgorean theorem, let's find BD:
![\begin{gathered} AB^2+AD^2=BD^2 \\ x^2+1^2=BD^2 \\ BD=\sqrt[]{1+x^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mcb3z2qzxrw3gb9d1txziz8rmuny7o16mj.png)
We know

Where
D is distance
R is rate
T is time
Swimmer needs to go from D to B at 3 miles per hour. Thus, we can say:
![\begin{gathered} D=RT \\ T=(D)/(R) \\ T=\frac{\sqrt[]{1+x^2}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/didw7lvpdlk98j61e6up9yyj9l53vc6pij.png)
Next part, swimmer needs to go from B to C at 6 miles per hour. Thus, we can say:

So, total time would be:
![T=\frac{\sqrt[]{1+x^2}}{3}+(4-x)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/qrbsmitsgrkhm7ixy2xazvr3vvn969j5zf.png)
We want to find the shortest possible time. From calculus we know that to find the shortest possible time, we need to differentiate the function T, set it equal to 0 to find the critical points and then use that point in the function T to find the shortest possible time.
Let's differentiate the function T:
![\begin{gathered} T=\frac{\sqrt[]{1+x^2}}{3}+(4-x)/(6) \\ T=(1)/(3)(1+x^2)^{(1)/(2)}+(4)/(6)-(1)/(6)x \\ T=(1)/(3)(1+x^2)^{(1)/(2)}+(2)/(3)-(1)/(6)x \\ T^(\prime)=((1)/(2))(1)/(3)(1+x^2)^{-(1)/(2)}\lbrack(d)/(dx)(1+x^2)\rbrack-(1)/(6) \\ T^(\prime)=(1)/(6)(1+x^2)^{-(1)/(2)}(2x)-(1)/(6) \\ T^(\prime)=\frac{2x}{6(1+x^2)^{(1)/(2)}}-(1)/(6) \\ T^(\prime)=\frac{x}{3\sqrt[]{1+x^2}}-(1)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qqnygpgmt8zoshssvoqpaimqsfwywr9bos.png)
Now, we find the critical point:
![\begin{gathered} T^(\prime)=\frac{x}{3\sqrt[]{1+x^2}}-(1)/(6) \\ T^(\prime)=0 \\ \frac{x}{3\sqrt[]{1+x^2}}-(1)/(6)=0 \\ \frac{x}{3\sqrt[]{1+x^2}}=(1)/(6) \\ \text{Cross Multiplying:} \\ 6x=3\sqrt[]{1+x^2} \\ \text{Square both sides:} \\ (6x)^2=(3\sqrt[]{1+x^2})^2 \\ 36x^2=9(1+x^2) \\ 36x^2=9+9x^2 \\ 36x^2-9x^2=9 \\ 27x^2=9 \\ x^2=(9)/(27) \\ x=\frac{\sqrt[]{9}}{\sqrt[]{27}} \\ x=\frac{3}{3\sqrt[]{3}} \\ x=\frac{1}{\sqrt[]{3}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rxdo2v2yvpfopttseyzv053tt84qs7n9zw.png)
Plugging this value into the equation of T, we get:
![\begin{gathered} T=\frac{\sqrt[]{1+x^2}}{3}+(4-x)/(6) \\ T=\frac{\sqrt[]{1+(\frac{1}{\sqrt[]{3}})^2}}{3}+\frac{4-\frac{1}{\sqrt[]{3}}}{6} \\ T=\frac{\sqrt[]{1+(1)/(3)}}{3}+\frac{4-\frac{1}{\sqrt[]{3}}}{6} \\ T=\frac{\sqrt[]{(4)/(3)}}{3}+\frac{4-\frac{1}{\sqrt[]{3}}}{6} \\ T=\frac{\frac{2}{\sqrt[]{3}}}{3}+\frac{4-\frac{1}{\sqrt[]{3}}}{6} \\ T=\frac{2}{3\sqrt[]{3}}+\frac{4-\frac{1}{\sqrt[]{3}}}{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nzcdkyat202z0pe7e7ovl85dw9inpinyru.png)
Now, we can use the calculator to find the approximate value of T to be:
T = 0.9553 hours
This is the optimized time.
Converting to approximate minutes, it will be:
57.32 minutes
Answer:
