189k views
5 votes
Find the greatest possible percent error in calculating the volume of the prism.

Find the greatest possible percent error in calculating the volume of the prism.-example-1
User DocCaliban
by
5.5k points

1 Answer

5 votes

Answer:

23%

Explanation:

Volume of a rectangular prism:

A rectangular prism has three dimensions, which are the base b, the height h and the width w.

The volume is:

V = b*w*h

In this question:

The base is 12 inches, so b = 12.

The width is 5 inches, so w = 5.

The height is 7 inches, so h = 7.

The volume is:

V = 12*5*7 = 420 cubic inches.

With error:

They are rounded to the nearest inch, so:

The base can go from 12 - 0.5 = 11.5 to 12 + 0.5 = 12.5 inches.

The width can go from 5 - 0.5 = 4.5 to 5 + 0.5 = 5.5 inches

The height can go from 7 - 0.5 = 6.5 to 7 + 0.5 = 7.5 inches.

Volume with the smallest values:

We have that b = 11.5, w = 4.5, h = 6.5. So

V = 11.5*4.5*6.5 = 336.375

Error of 420 - 336.375 = 83.625

As a percent, the error is of (83.625/420)*100 = 19.9%

Volume with the higher values:

We have that b = 12.5, w = 5.5, h = 7.5. So

V = 12.5*5.5*7.5 = 515.625

515.625 - 420 = 95.625

As a percent, the error is of (95.625/420)*100 = 22.7% = 23%

User Winkster
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.