![((x^3y)/(xy^2))^(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/517wvhtvek681xlmkd6j9o2rfptl09xbpa.png)
1. When dividing with exponents, the exponent of a variable in the denominator is subtracted from the exponent in the numerator for the same variable. Then, first step to simplify is subtract the exponents of x and y in the fraction in parentheses:
![\begin{gathered} =(x^(3-1)y^(1-2))^(-2) \\ =(x^2y^(-1))^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qte6spdbjvpvez826va8prbfxer3ctrh8i.png)
2. To remove the parentheses you multiply each exponent in the parentheses by the exponent out of the parentheses:
![\begin{gathered} =x^(2\cdot(-2))y^((-1)\cdot(-2)) \\ \\ =x^(-4)y^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eivodidau1a49zogk3e1reencahnexqj4m.png)
3. When you have a negative exponent (as the x powered to -4) you divide 1 in to the term with negative exponent (after you divide the exponent turns into a positive exponent):
![=(1)/(x^4)\cdot y^2](https://img.qammunity.org/2023/formulas/mathematics/college/r0os7rfu0r4hgrjla60y101hjmza5nqmkr.png)
4. Then, the given expression simplified is:
![((x^3y)/(xy^2))^(-2)=(y^2)/(x^4)](https://img.qammunity.org/2023/formulas/mathematics/college/hklauj7ak5tdq0xq47ot8qjz5lrvmpshl5.png)