113k views
2 votes
I need some help please Find the inverse function of the given function.1. F(x)= x^2-4/2x^2

User ItZme
by
8.8k points

1 Answer

6 votes

f(x)=\frac{x^2-4^{}}{2x^2}

to solve this problem, we can follow some steps

step 1

replace f(x) with y


\begin{gathered} f(x)=(x^2-4)/(2x^2) \\ y=(x^2-4)/(2x^2) \end{gathered}

step 2

replace every x with a y and every y with an x


\begin{gathered} x=(y^2-4)/(2y^2) \\ \end{gathered}

step 3

solve for y


\begin{gathered} x=(y^2-4)/(2y^2) \\ \text{cross multiply both sides} \\ 2y^2* x=y^2-4^{} \\ 2y^2x=y^2-4 \\ \text{collect like terms} \\ 2y^2x-y^2=-4 \\ \text{factorize y}^2 \\ y^2(2x-1)=-4 \\ \text{divide both sides by 2x - 1} \\ (y^2(2x-1))/((2x-1))=-(4)/((2x-1)) \\ y^2=-(4)/(2x-1) \\ \text{take the square root of both sides} \\ y=-\sqrt[]{(4)/(2x-1)} \end{gathered}

therefore the inverse of f(x) is


f^(-1)(x)=-\sqrt[]{(4)/(2x-1)}

User Riley Van Hengstum
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories