Answer:
To the nearest tenth, the length is 6.4 meters, and the width is 3.4 meters.
Explanation:
Let w be the width of the rectangle. Then l = w + 3, and we have:
![w(w + 3) = 22](https://img.qammunity.org/2023/formulas/mathematics/high-school/w2kxueqbccclj3o3arw9mxuh5hpw2vz2n0.png)
![{w}^(2) + 3w = 22](https://img.qammunity.org/2023/formulas/mathematics/high-school/lco3uq0r6um3bb312nm5qbu3w32hoqokez.png)
![{w}^(2) + 3w - 22 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/rvyxlfp2xvxgtl7abk69zvjftyfc6r3rhs.png)
Calculating the discriminant:
![\sqrt{ {3}^(2) - 4(1)( - 22)} = √(9 + 88) = √(97)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vcigchh8sa2qdlui95v5oj2yitjz17cujt.png)
So by the quadratic formula, and discarding the negative solution, we then obtain:
![w = ( - 3 + √(97) )/(2) = 3.4](https://img.qammunity.org/2023/formulas/mathematics/high-school/3pbh40qeswyom850ts643quywk1f32vkes.png)
![l = w + 3 = 3.4 + 3 = 6.4](https://img.qammunity.org/2023/formulas/mathematics/high-school/ml8p8aivkb8x4c6ooyyyvio87amfy0g56h.png)