Answer:
The number of years for the repayment is
![t=5years](https://img.qammunity.org/2023/formulas/mathematics/college/cezx6qbcigqc0v60opy46v3712dk9pinn2.png)
The amount to be repaid back monthly is
![\text{ \$31.50}](https://img.qammunity.org/2023/formulas/mathematics/college/mmmbcq3tv8tzfy0sxqx2rbnkiuvdhhzw6s.png)
The cost of the laptop given is
![\text{ P=\$884.43}](https://img.qammunity.org/2023/formulas/mathematics/college/8bptslvf3aaszorpgq26uigqxw0b0v2el1.png)
Step 1:
Calculate the total amount of money to be repaid after 5 years
![\begin{gathered} Amount\text{ repayable=monthly payments}* number\text{ of years}*12 \\ Amount\text{ repayable=31.50}*5*12 \\ Amount\text{ repayable=1890} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrjceo848myhp9w652db9xwd5zdpoiz7ro.png)
Step 2:
Calculate the interest on the laptop
![\begin{gathered} interest=Amount\text{ repayable-cost of the laptop} \\ interest=1890-884.43 \\ interest=1005.57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kvg9lrrobzpr56t0hnaujufm5t7cc4hknb.png)
Step 3:
To calculate the interest rate, we will use the formula below
![\begin{gathered} I=(PRT)/(100) \\ (100I)/(PT)=(PRT)/(PT) \\ R=(100I)/(PT) \\ T=5,P=884.43,I=1005.57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c2vlmm3snspzg1yibhtfnvaflaeko9yyop.png)
By substituting the values, we will have
![\begin{gathered} R=(100I)/(PT) \\ R=(100*1005.57)/(884.43*5) \\ R=(100557)/(4422.15) \\ R=22.7\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s2hg9962zgzbx6dhubaoljptjwtg6hhffe.png)
Hence,
The interest rate will be
![\Rightarrow22.7\%](https://img.qammunity.org/2023/formulas/mathematics/college/7lqhpawww622v7zlxdpx8ktzywcq14w6mu.png)