Answer:
8
Explanation:
Let the number = n
Twice the number decreased by 4:
![2n-4](https://img.qammunity.org/2023/formulas/mathematics/college/cnd60nb64k36ea8rwh7f2by94wvmwdt82u.png)
The phrase 'at least' means the expression above can either be equal to or greater than 12.
Thus, the given statement as inequality is:
![2n-4\geq12](https://img.qammunity.org/2023/formulas/mathematics/college/bsofsm4ayu8cqae5jnww6tsye65ucjuuux.png)
We then solve the inequality for n.
![\begin{gathered} \text{ Add 4 to both sides} \\ 2n-4+4\geq12+4 \\ 2n\geq16 \\ \text{ Divide both sides by 2} \\ (2n)/(2)\geq(16)/(2) \\ n\geq8 \\ \implies n=(8,9,10,\cdots) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tth8upg62upkwqjojsdl0amjhqdt9z2tdy.png)
The number that is a solution is 8.