We are given the following radical expression
![\sqrt[3]{(1)/(64)}](https://img.qammunity.org/2023/formulas/mathematics/college/xwodn7tgo01gwhhz2wqzlrlm4kljdwp5v1.png)
Let us simplify it using the properties of radicals.
The quotient property of radicals is given by
![\sqrt[n]{(x)/(y)}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}](https://img.qammunity.org/2023/formulas/mathematics/college/wog5fiyavlp7tqhec51ah0fsrnxehv69q1.png)
Let us apply the above property
![\sqrt[3]{(1)/(64)}=\frac{\sqrt[3]{1}}{\sqrt[3]{64}}](https://img.qammunity.org/2023/formulas/mathematics/college/r86ca0epsnod1bmwt2dgi87n9lztueg69r.png)
Further simplifying the radical
![\frac{\sqrt[3]{1}}{\sqrt[3]{64}}=\frac{1^{(1)/(3)}}{64^{(1)/(3)}}=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/mh3q640undppux2f0fj04fkbxvnaq4qsnf.png)
The cube root of 1 is 1 and the cube root of 64 is 4
Therefore, the correct options are
![\begin{gathered} \frac{\sqrt[3]{1}}{\sqrt[3]{64}} \\ (1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tmoq4t4ncjo51jciuusozfqjtkt5ixap60.png)