Given:
The eyuation of the parabola.
![y=(x-4)(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/au4pve5ank3usa9xok2gdt1q7cacsscrbo.png)
Required:
We need to find the x-intercepts, vertex, and standard form of the equation.
Step-by-step explanation:
Set y =0 and solve for x to find the x-intercepts of the parabola.
![(x-4)(x+2)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/d0eodl8h3w60mabncnmzmenesr7293ep9g.png)
![(x-4)=0,(x+2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/9ns0b3qt43m1w42ggkm4iejxv8ugz5610c.png)
![x=4,x=-2](https://img.qammunity.org/2023/formulas/mathematics/college/859hbm8yuodcmgdx56hohwibnnkacjau8f.png)
The x-intercepts are 4 and -2.
Multipy (x-4) and (x+2) to find the stansdad form of the equation.
![y=x\left(x+2\right)-4\left(x+2\right)](https://img.qammunity.org/2023/formulas/mathematics/college/tg3i2a4kalnya2q8oacg1pmdnwxssso8eo.png)
![y=(x)x+2(x)+(-4)x+(-4)2](https://img.qammunity.org/2023/formulas/mathematics/college/hcscs2dqb1hsoul2at6p78xmgwgumx6nv4.png)
![y=x^2+2x-4x-8](https://img.qammunity.org/2023/formulas/mathematics/college/dzvdru3dg3bymlcbg5clihsm3m7i0nfycj.png)
![y=x^2-2x-8](https://img.qammunity.org/2023/formulas/mathematics/college/jvtfjtlgxwislb13wd7nufhufxgld1iy2p.png)
The standard form of the equation is
![y=x^2-2x-8.](https://img.qammunity.org/2023/formulas/mathematics/college/ctc3rt77rdrny4gabz3fqzui2jn8d02b49.png)
which is of the fom
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
where a =1, b =-2 and c =-8.
![\text{ The x- coordinate of the vertex is }h=-(b)/(2a).](https://img.qammunity.org/2023/formulas/mathematics/college/bpb1px4vhlnv8pgdnd1v7n11qj3xbvirvg.png)
Substitute b =-2 and a =1 in the equation.
![\text{ The x- coordinate of the vertex is }h=-((-2))/(2(1))=1](https://img.qammunity.org/2023/formulas/mathematics/college/mumkdqhkcy2mnp5zq53cid8pgj301zgd3u.png)
![substitute\text{ x =1 in the equation }y=x^2-2x-8\text{ to find the y-coordinate of the vertex.}](https://img.qammunity.org/2023/formulas/mathematics/college/es3lbsv1g9uwzh0kenhmel0quw4i2hio6m.png)
![y=1^2-2(1)-8=-9](https://img.qammunity.org/2023/formulas/mathematics/college/xsfnapqg80hp0t28uwu75vg1t8rqvczrnr.png)
The vertex of the given parabola is (1,-9).
Final answer:
1)
The x-intercepts are 4 and -2.
2)
The standard form of the equation is
![y=x^2-2x-8.](https://img.qammunity.org/2023/formulas/mathematics/college/ctc3rt77rdrny4gabz3fqzui2jn8d02b49.png)
3)
The vertex of the given parabola is (1,-9).