59.4k views
1 vote
Which polynomial function is graphed below?-10A. (x) = (x – 3yº (x + 2)B. f(x) = (x - 2y(x +3)C. (*) - (x - 2)(x+3)D. *(x) = (x-3)(x + 2y4

User Mzrnsh
by
7.5k points

1 Answer

5 votes

Every polynomial can be written in the form:


f(x)=(x-a_1)(x-a_2)\ldots_{}

The a_1, a_2.... are the roots of the polynomial, meaning that f(a_1) = f(a_2) = ... = 0. This happens wen the graph of the polynomial intersects or tangency the x-axis. Whe it only tangecy the x-axis, it means that you have two of the root.

In this case, we have the polynomial tangency the x-axis in x = -2 and intersect the x-axis in x = 3. This means that the polynomial has roots -2, -2 (again) and 3. So:


\begin{gathered} f(x)=(x-(-2))(x-(-2))(x-3) \\ f(x)=(x+2)(x+2)(x-2) \\ f(x)=(x+2)^2(x-3) \end{gathered}

Since the order doesn't metter, we can right in this way:


f(x)=(x-3)(x+2)^2

Which corresponds to alternative D.

User EmKay
by
7.7k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories