Given:
Velocity at t = 0: 80 m/s
Velocity at t = 10.0 s: 167 m/s
Let's find the distance it covered between t = 2.0s and t = 6.0 s
Apply the kinematics formula:
![v=u+at](https://img.qammunity.org/2023/formulas/mathematics/high-school/noa8ap485tcbqe59xpwvgja2yjtndl0d9d.png)
Where:
v is the final velocity ==> 167 m/s
u is the initial velocity ==> 80 m/s
a is the acceleration
t is the time ==> 10.0 - 0 = 10.0 s
Now, let's find the acceleration.
Rewrite the formula for a:
![\begin{gathered} a=(v-u)/(t) \\ \\ a=(167-80)/(10) \\ \\ a=(87)/(10) \\ \\ a=8.7m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/eudpmrdq1tm8k5xp58d5mu8y9qib1ucpqg.png)
The acceleration is 8.7 m/s²
To find the distance, apply the formula:
![s=ut+(1)/(2)at^2](https://img.qammunity.org/2023/formulas/physics/college/obvwlaq2brhvduordk5kuedw6274qqa7x1.png)
Thus, we have:
• At t = 2.0 s:
![\begin{gathered} d_1=80(2)+(1)/(2)(8.7)(2)^2 \\ \\ d_1=160+17.4 \\ \\ d_1=177.4\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/htkmgxltw423hmbr3xcgxrbrn6vxteqybd.png)
• At t = 6.0 s:
![\begin{gathered} d_2=ut+(1)/(2)at^2 \\ \\ d_2=80(6)+(1)/(2)(8.7)(6)^2 \\ \\ d_2=480+156.6 \\ \\ d_2=636.6\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/lt2ymue5khw08qbevlvtvev1ry2w3nf186.png)
To find the distance traveled between t = 2.0 s and t = 6.0 s, we have:
d = d2 - d1 = 636.6 m - 177.4 m
d = 459.2 m
Therefore, the distance traveled betwen t = 2.0 s and t = 6.0 s is 459.2 m
ANSWER:
459.2 m