Define an exponential function, h(x), which passes through the points (1,16) and
(5, 1296). Enter your answer in the form axb^x
the equation is of the form
![y=a(b)^x](https://img.qammunity.org/2023/formulas/mathematics/college/x4kto8751eypenmr0i3prbmrtznyb1ero8.png)
we have
point (1,16)
so
For x=1, y=16
substitute
![\begin{gathered} 16=a(b)^1 \\ 16=a\cdot b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tfi8rqo34yxv5330ftni1gfzfu3sm3k37m.png)
isolate the variable a
![a=(16)/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/9cahixpv7nwzp62z8b6saazlwcocwl374g.png)
Point (5,1296)
For x=5, y=1,296
substitute
![1,296=a(b)^5](https://img.qammunity.org/2023/formulas/mathematics/college/sunywpfhgkgqjiwuekpuuy6ys37l5dox60.png)
substitute equation 1 in equation 2
![1,296=((16)/(b))\cdot b^5](https://img.qammunity.org/2023/formulas/mathematics/college/e602h6cz5a3492gja1tndo7e8ievvsa06t.png)
solve for b
![\begin{gathered} (1296)/(16)=b^4 \\ b^4=81 \\ b=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g94jvy2y5q2i7hpnr7wpp3eodizpiddp1f.png)
Find the value of a
a=16/3
therefore
the equation is
![y=(16)/(3)\cdot(3)^x](https://img.qammunity.org/2023/formulas/mathematics/college/qmxn5pophio6rvfsyfw0pa1gk194myejul.png)
see the attached figure to better understand the problem