Step-by-step explanation:
Given;
We are given the exponential equation shown below;
![((125)/(8))^(4x-1)=((4^2)/(25^2))^(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/sg4kowp84lihzg7mis81ltddbe0gvjiab0.png)
Required;
We are required to
(i) Find a common base
(ii) Solve for x
Step by step solution;
To solve this problem we shall start with the following steps;
![[((5)/(2))^3]^(4x-1)=[((2)/(5))^4]^(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/nex43li8e2im3xxf78bz2cm28xenuedeln.png)
For the left side of the equation, we can refine by applying the rule of exponents;
![\begin{gathered} Flip\text{ the left side of the equation:} \\ ((2)/(5))^(-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7xc083oomxr2o33ojz2z52odomtthnbwk8.png)
Therefore, we now have;
![[((2)/(5))^(-3)]^(4x-1)=[((2)/(5))^4]^(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/e89rbs53e6s4shb76j5gw09e9tnkr4gdgi.png)
![((2)/(5))^(-12x+3)=((2)/(5))^(4x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/obakpuu1vtpwxmdd1s2ye6j5koaelit8u6.png)
We now have a common base and that means;
![\begin{gathered} If: \\ a^x=a^y \\ Then: \\ x=y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iyx6pv2foh2xvrcv9gd4x2dco94dzfx3ul.png)
Therefore;
![-12x+3=4x+4](https://img.qammunity.org/2023/formulas/mathematics/college/349i41z2ng34oykm6n0avv9cacr8b95ycx.png)
![-12x-4x=4-3](https://img.qammunity.org/2023/formulas/mathematics/college/f0bkco25konn42lc68gfnnze3pf04aqyzu.png)
![-16x=1](https://img.qammunity.org/2023/formulas/mathematics/college/lw1rwi5wz1u2avumz25f6823u4hk3q0ngt.png)
Divide both sides by -16;
![x=-(1)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/kv7vr7ifpst3et2p96043d53yjzvdhwy7x.png)
ANSWER:
![x=-(1)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/kv7vr7ifpst3et2p96043d53yjzvdhwy7x.png)