170k views
3 votes
Let f(x) = 9 - x, g (x) = x*2 + 2x - 8, and h (x) = x - 4

Let f(x) = 9 - x, g (x) = x*2 + 2x - 8, and h (x) = x - 4-example-1

1 Answer

6 votes

Solution

We are given the following functions


\begin{gathered} f(x)=9-x \\ g(x)=x^2+2x-8 \\ h(x)=x-4 \end{gathered}

g(x) + f(x)


\begin{gathered} g(x)+f(x)=(x^2+2x-8)+(9-x) \\ \\ g(x)+f(x)=x^2+2x-8+9-x \\ \\ g(x)+f(x)=x^2+x+1 \end{gathered}

h(x) - f(x)


\begin{gathered} h(x)-f(x)=(x-4)-(9-x) \\ \\ h(x)-f(x)=x-4-9+x \\ \\ h(x)-f(x)=2x-13 \end{gathered}

f o h(10)


\begin{gathered} First \\ h(x)=x-4 \\ h(10)=10-4 \\ h(10)=6 \\ and \\ f(x)=9-x \\ f(6)=9-6 \\ f(6)=3 \\ Now,\text{ to solve} \\ foh(10)=f(h(10)) \\ foh(10)=f(6) \\ \\ foh(10)=3 \end{gathered}

3 * g(-1)


\begin{gathered} First, \\ g(x)=x^2+2x-8 \\ g(-1)=(-1)^2+2(-1)-8 \\ \\ g(-1)=1-2-8 \\ \\ g(-1)=-9 \\ Now\text{ to solve} \\ 3g(-1)=3* g(-1) \\ \\ 3g(-1)=3*-9 \\ \\ 3g(-1)=-27 \end{gathered}

h(x) * h(x)


\begin{gathered} h(x)=x-4 \\ Now, \\ h(x)*h(x)=(x-4)(x-4) \\ \\ h(x)*h(x)=x^2-8x+16 \end{gathered}

g(x)/h(x)


(g(x))/(h(x))=(x^2+2x-8)/(x-4),\text{ }x\\e4

User Mike Saull
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories