We start with the parent function:
![y=\sqrt[]{x}](https://img.qammunity.org/2023/formulas/mathematics/college/z3kevgn2c29nk34ba6n3a5xhvm9rhyzg0b.png)
The transformations are:
• Shift up 6 units
,
• Reflect about the x-axis
,
• Reflect about the y-axis
The first transformation is equal to add 6 units to y:
![\begin{gathered} y_2=y+6 \\ y_2=\sqrt[]{x}+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f1bv0t51d131rev05b7b4418eer1uf1am9.png)
Then, a reflection across the x-axis makes y change sign, so we will have:
![\begin{gathered} y_3=-y_2 \\ y_3=-\sqrt[]{x}-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lbkp16y870hoez8i38dzru3q3ahkmldqxg.png)
Finally, a reflection across the y-axis makes the argument x change sign, so we will have:
![\begin{gathered} y_4=y_3(-x) \\ y_4=-\sqrt[]{-x}-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ffhs4yepbykdzx3oq993n5qh3wos708zh6.png)
This is the final function.
We can graph this function, and the intermediate steps, as:
Answer: y = -√-x - 6