EXPLANATIONS:
Given;
We are given the following expression;
![arctan((1)/(√(3)))](https://img.qammunity.org/2023/formulas/mathematics/college/8lkx7cax67zixcq7nj8mwyuxsybdtnoa5o.png)
Required;
We are required to find the angle measure of this in both radians, and degrees.
Step-by-step solution;
For the angle whose tangent is given as 1 over square root of 3, on the unit circle, we would have
![\begin{gathered} tan\theta=(1)/(√(3)) \\ Rationalize: \\ \\ (1)/(√(3))*(√(3))/(√(3)) \\ \\ =(√(3))/(√(3)*√(3)) \\ \\ =(√(3))/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2y33qo6zq9e39b1syb1ariki7c3037mz27.png)
On the unit circle, the general solution for this value as shown would be;
![tan^(-1)((√(3))/(3))=(\pi)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/e7m0mlg7h3rkn3r4zp35psb29y356w8hbq.png)
To convert this to degree measure, we will use the following equation;
![(r)/(\pi)=(d)/(180)](https://img.qammunity.org/2023/formulas/mathematics/college/6ltio9fh591y0pdcfe7bwxlqjzpnqyagxh.png)
We now substitute for the value of r;
![\begin{gathered} ((\pi)/(6))/(\pi)=(d)/(180) \\ \\ (\pi)/(6)/(\pi)/(1)=(d)/(180) \\ \\ (\pi)/(6)*(1)/(\pi)=(d)/(180) \\ \\ (1)/(6)=(d)/(180) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zmu26nr52wm632ox4x6abp42sf9z6plvla.png)
We now cross multiply;
![\begin{gathered} (180)/(6)=d \\ \\ 30=d \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/czi2xme0ep07vgnv64d7z7l8p9zj3p38k7.png)
Therefore;
ANSWER:
![\begin{gathered} radians=(\pi)/(6) \\ \\ degrees=30\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/50hj90mwhual3s27ll0sszpl9jgvxerkj2.png)