![y=x^2-8x+12](https://img.qammunity.org/2023/formulas/mathematics/college/918u7r88elp2emizf3eod7672rqzjkqnfx.png)
To calculate the x-intercepts we replace y=0 and solve for x
![x^2-8x+12=0](https://img.qammunity.org/2023/formulas/mathematics/college/i8inp97hrmo5gptqb0ylch1q7casdrb37p.png)
where a is 1, b is -8 and c 12
so factor the expression using
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
replacing
![\begin{gathered} x=\frac{-(-8)\pm\sqrt[]{(-8)^2-4(1)(12)^{}}}{2(1)} \\ \\ x=\frac{8\pm\sqrt[]{64-48}}{2} \\ \\ x=\frac{8\pm\sqrt[]{16}}{2} \\ \\ x=(8\pm4)/(2) \\ \\ x=4\pm2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zphhy9qlxr5ak0ea2ybcqg38qg2rv5etrk.png)
so x have two solutions because there are two x-intercepts
![\begin{gathered} x_1=4+2=6 \\ x_2=4-2=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c4ys3t9cr4nf5dl37eftqf8x2ef1912oi8.png)
then the x-intercepts are 6 and 2, the corrdinates are
![\begin{gathered} (6,0) \\ (2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ofs1ckc4o9az5p5rslty7me45uopmlyc1.png)
Vertex
the vertex is a point (x,y) to calculate x we use
![x=(-b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/thp2xvy4ibcymljghqfdd580j7p1ckgbwu.png)
and replace
![\begin{gathered} x=(-(-8))/(2(1)) \\ \\ x=(8)/(2)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cougncuhgjfoehfmodfuxqsy9xus5698u4.png)
now replace x=4 on the equation of the parable to find y
![\begin{gathered} y=x^2-8x+12 \\ y=(4)^2-8(4)+12 \\ y=16-32+12 \\ y=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o2567kijjyi26eh8u748jbj7axpq4pi9hh.png)
the coordinate of the vertex is
![(4,-4)](https://img.qammunity.org/2023/formulas/mathematics/college/pxc2y5ysck78ef8di7fu0ilpqp0yfn8ctj.png)