
To calculate the x-intercepts we replace y=0 and solve for x

where a is 1, b is -8 and c 12
so factor the expression using
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
replacing
![\begin{gathered} x=\frac{-(-8)\pm\sqrt[]{(-8)^2-4(1)(12)^{}}}{2(1)} \\ \\ x=\frac{8\pm\sqrt[]{64-48}}{2} \\ \\ x=\frac{8\pm\sqrt[]{16}}{2} \\ \\ x=(8\pm4)/(2) \\ \\ x=4\pm2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zphhy9qlxr5ak0ea2ybcqg38qg2rv5etrk.png)
so x have two solutions because there are two x-intercepts

then the x-intercepts are 6 and 2, the corrdinates are

Vertex
the vertex is a point (x,y) to calculate x we use

and replace

now replace x=4 on the equation of the parable to find y

the coordinate of the vertex is
