We are given the following information:
Weight of skater 1 = 625 N
Weight of skater 2 = 725 N
Final velocity of skater 2 = 1.5 m/s
Final velocity of skater 1 = ?
Recall from the law of conservation of momentum, the total momentum before the collision and after the collision must be equal.
![\begin{gathered} p_(before)=p_(after) \\ m_1u_1+m_2u_2=m_1v_1+m_2v_2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/oz69dil046mnxj1xx04gcn93fqdlvsltkk.png)
The initial velocities of both skaters are 0 m/s
![m_1\cdot0_{}+m_2\cdot0=m_1v_1+m_2v_2](https://img.qammunity.org/2023/formulas/physics/college/ejtnagd8ortebiep1c2rs39057cg1fywlx.png)
Also, m = W/g
![\begin{gathered} 0=m_1v_1+m_2v_2 \\ 0=((625)/(9.8))\cdot_{}v_1+((725)/(9.8))\cdot1.5 \\ ((625)/(9.8))\cdot_{}v_1=-((725)/(9.8))\cdot1.5 \\ (63.78)\cdot_{}v_1=-110.97 \\ _{}v_1=-(110.97)/(63.78) \\ _{}v_1=-1.7\: (m)/(s) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ru14xsf3w1l3cg7ia42f1mq41wd08bgx0u.png)
So, the lighter skater will travel with a velocity of 1.7 m/s
The negative sign means that the lighter skater will be traveling oppositely to the heavier skater.