49.7k views
1 vote
What is the inverse of the function f (x) = 3(x + 4)^2 – 2, such that x ≤ –4?A. f^-1(x)=-4 + square root of x/3+2B. f^-1(x)=-4 - square root of x/3+2C. f^-1(x)=-4 + square root of x+2/3D. f^-1(x)=-4 - square root of x+2/3

1 Answer

5 votes

Given the following function:

f(x) = 3(x + 4)^2 – 2

Let's determine its inverse form.

*Change f(x) = y, swap x and y then solve for y.


\text{ f\lparen x\rparen= 3\lparen x + 4\rparen}^2\text{ - 2}
\text{ y = 3\lparen x + 4\rparen}^2\text{ - 2}
\text{ x = 3\lparen y + 4\rparen}^2\text{ - 2}
\text{ 3\lparen y + 4\rparen}^2\text{ - 2 = x}
\text{ 3\lparen y + 4\rparen}^2\text{ = x + 2}
\text{ \lparen y + 4\rparen}^2\text{ = }\frac{\text{ x + 2 }}{\text{ 3}}
\text{ y + 4 = }\sqrt{\frac{\text{ x + 2 }}{\text{ 3}}}
\text{y = f}^(-1)(\text{x\rparen = -4 + }\sqrt{\frac{\text{ x + 2 }}{\text{ 3 }}}

Therefore, the answer is CHOICE C.

User Kyle Siegel
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.