214k views
2 votes
1. An input-output table has constant differences. When the input is 3, the output is 10. When the input is 7, the output is 24. a. Find the constant difference. b. Find the output when the input is 0. C. Find the linear function that fits the table.

User Jan Wrobel
by
9.1k points

1 Answer

2 votes

a)7,17

b)-25

c)


y=3.5x-25

Step-by-step explanation

table

a) differences

10-3=7

24-7=17

Step 1

find the slope


\begin{gathered} \text{slope}=(\Delta y)/(\Delta x)=(y_2-y_1)/(x_2-x_1) \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \end{gathered}

Let

P1(3,10)

p2(7,24)

replace,


\begin{gathered} \text{slope}=(\Delta y)/(\Delta x)=(y_2-y_1)/(x_2-x_1) \\ \text{slope}=(24-10)/(7-3)=(14)/(4)=(7)/(2) \\ \text{slope}=(7)/(2) \end{gathered}

Step 2

find the equation


\begin{gathered} y-y_1=m(x-x_1) \\ y-10=(7)/(2)(x-10) \\ y-10=(7)/(2)x-(70)/(2) \\ y=(7)/(2)x-(70)/(2)+10 \\ y=3.5x-25 \end{gathered}

Step 3

when x=0


\begin{gathered} y=3.5x-25 \\ y=3.5\cdot0-25 \\ y=-25 \end{gathered}

I hope this helps you

User Lnafziger
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories