208k views
5 votes
Find the second and third derivative of
y = √(x)

User Glory Raj
by
5.7k points

1 Answer

6 votes

\begin{gathered} \text{The function }y=\sqrt[]{x},\text{ can be expressed as:} \\ y=x^{(1)/(2)} \end{gathered}

We can use the power rule to get the second and third derivative of the function.


\begin{gathered} \text{First derivative:} \\ y^(\prime)=\mleft((1)/(2)\mright)x^{(1)/(2)-1} \\ y^(\prime)=((1)/(2))x^{-(1)/(2)} \\ y^(\prime)=\frac{x^{-(1)/(2)}}{2} \end{gathered}
\begin{gathered} \text{Second derivative} \\ y^(\prime)^(\prime)=(-(1)/(2))\frac{x^{-(1)/(2)-1}}{2} \\ y^(\prime\prime)=-\frac{x^{-(3)/(2)}}{4}\text{ or }y^(\prime\prime)=-\frac{1}{4x^{(3)/(2)}} \\ \end{gathered}
\begin{gathered} \text{Third derivative} \\ y^(\prime)^(\prime)^(\prime)=(-(3)/(2))-\frac{x^{-(3)/(2)-1}}{4} \\ y^(\prime\prime\prime)=\frac{3x^{-(5)/(2)}}{8}\text{ or }y^(\prime\prime\prime)=\frac{3}{8x^{(5)/(2)}} \end{gathered}

Find the second and third derivative of y = √(x)-example-1
Find the second and third derivative of y = √(x)-example-2
User Jjczopek
by
5.4k points