consider two points closest to the line. say ,
![\begin{gathered} (x_1,y_1)=(6,0) \\ (x_2_{}_{}_{},y_2)=(8,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1i8dyb21fjm6k48jhaywyxzp1b58ux47tx.png)
let us find the slope, m by the formula
![m=\frac{y_2-y_1}{x_2_{}_{}-x_1}](https://img.qammunity.org/2023/formulas/mathematics/college/ue1rwg7b27biu2scodnnd2c0d737hthyal.png)
subsitute the points in the formula,
![\begin{gathered} m=(1-0)/(8-6) \\ m=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rgraplw9jy4790zbonp369lbjg73gh3ft4.png)
let us find the y - intercept.
![y=mx+b\ldots(1)](https://img.qammunity.org/2023/formulas/mathematics/college/hn804s2e6uqd4nzmgrxh6b9epgmujryrkw.png)
subsitute the one of the point (6,0) in the above equation.
![\begin{gathered} 0=(1)/(2)*6+b \\ 0=3+b \\ b=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wbyaelcopo3rrgoe7asuwfr8f42zaq5o4t.png)
thus,
subsitute m= 1/2 and b = - 3 in the equation (1),
![y=(1)/(2)x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zskrtljiwu4xld9s2r1iyre179iv4m4lv8.png)