Given:
The initial population is P(i) = 23,900.
The annual growth rate is r = 9% = 0.09.
The number of year is t = 2020-2012 = 8 years.
The objective is to find the population in the year 2020.
Step-by-step explanation:
The growth formula to find the final population is,
![P=P(i)*(1+r)^t\ldots\text{ . . . (1)}](https://img.qammunity.org/2023/formulas/mathematics/college/op23pwlxx00kgf79k1lc3nyj508l570o5a.png)
On plugging the given values in equation (1),
![P=23900(1+0.09)^8](https://img.qammunity.org/2023/formulas/mathematics/college/eqzqh6fpnmafuc4batlvvmnxkaw50z1xmg.png)
On further solving the above equation,
![\begin{gathered} P=23900(1.09)^8 \\ =47622.2471\ldots\text{.} \\ \approx47622 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ggkxztfdez5oca3htxuqcawfbuan3yqd0r.png)
Hence, the final population using the exponential growth formula is 47622.