x=11.3 y=8
Step-by-step explanationhere we have a right triangle, so we can use a trigonometric function to find the missing sides
so
Step 1
a)let
![\begin{gathered} angle=45\text{ \degree} \\ opposite\text{ side=8} \\ adjacent\text{ side=y} \\ hypotenuse=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7kt67n23v91ikz2ofxpf583nwuzkkn2or.png)
Step 2
now, fin the missing length
a) y
to find the adjacent side we can use the stan function
![tan\theta=\frac{opposite\text{ side}}{adjacent\text{ side}}](https://img.qammunity.org/2023/formulas/mathematics/college/ohpwg7hmnt4maoyi9b6aqpn0l5onwyg1oh.png)
replace and solve for y( adjacent side)
![\begin{gathered} tan45=(8)/(y) \\ y=\frac{8}{tan\text{ 45}}=(8)/(1) \\ y=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uo3x3chr6w8megk99tyrdreuqtvjo5jwsl.png)
b)x (hypotenuse)
to find the hyoptenuse we can use the sin function ,
![\sin\theta=\frac{opposite\text{ side}}{hypotenuse}](https://img.qammunity.org/2023/formulas/mathematics/college/o85jgxo5i6y9k1k7xtpsbywqo5vhd5khnr.png)
replace and solve for x
![\begin{gathered} sin\text{ 45=}(8)/(x) \\ x=\frac{8}{sin\text{ 45}}=11.3 \\ x=11.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4k03dekwa9n5hcy1fnk6y8vplw6uutumjj.png)
therefore, the answer is
x=11.3 y=8
I hope this helps you