Given that the region is enclosed by the x-axis and this curve:
![y=-x^2-3x+4](https://img.qammunity.org/2023/formulas/mathematics/college/as8brpffcy9fa811gx4s87is4o7iowvwqz.png)
You can graph the function using a Graphic Tool:
Noice that the area region you must calculate is:
Notice that it goes from:
![x=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/wcn1xvhdqswk4z8d45ock4ayhxlpyrm9zt.png)
To:
![x=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xsb7940fuqxllob7pwpm2jsl9ruu78r3uv.png)
Therefore, you can set up that:
![Area=\int_(-4)^1(x^2-3x+4)-(0)dx](https://img.qammunity.org/2023/formulas/mathematics/college/jlylb3agy21om8i57xx0355yiswiuo3hew.png)
In order to solve the Definite Integral, you need to:
- Apply these Integration Rules:
![\int x^ndx=(x^(n+1))/(n+1)+C](https://img.qammunity.org/2023/formulas/mathematics/college/2xodhmwnjtjla7yoxje4bytli302ytf2de.png)
![\int kf(x)dx=k\int f(x)dx](https://img.qammunity.org/2023/formulas/mathematics/college/plfierooqw05yc5ndg1e4ive9kwb229ee9.png)
Then, you get:
![=((x^3)/(3)-(3x^2)/(2)+4)|^1_(-4)](https://img.qammunity.org/2023/formulas/mathematics/college/ikrir99magvxpgykbhquzhihyneioyektu.png)
- Evaluate:
![=((1^3)/(3)-(3(1)^2)/(2)+4)-(((-4)^3)/(3)-(3(-4)^2)/(2)+4)](https://img.qammunity.org/2023/formulas/mathematics/college/sk3dmcbsy2c3ggyw3epbruyx4c07v8lhwe.png)
![Area\approx64.17](https://img.qammunity.org/2023/formulas/mathematics/college/82ur3aqcy5kawbul7q9mzmvx9bgaz6lrib.png)
Hence, the answer is:
![Area\approx64.17](https://img.qammunity.org/2023/formulas/mathematics/college/82ur3aqcy5kawbul7q9mzmvx9bgaz6lrib.png)