ANSWER:
Distance of the run: 18 miles
Distance of the bicycle race: 116 miles
Explanation:
Given:
Total distance = 134 miles
Total time = 7 hours
Average velocity during running = 6 mph
Average velocity during bicycle = 29 mph
Let x be the running distance and y be the bicycle distance.
We know that velocity equals distance in a given time, like this:
![\begin{gathered} v=(d)/(t) \\ \\ \text{ Therefore:} \\ \\ t=(d)/(v) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/opxraqnxxt0imj65kuga9mfqgis7nq5scw.png)
Knowing the above, we can establish the following system of equations:
![\begin{gathered} t_1+t_2=7\rightarrow(d_1)/(v_1)+(d_2)/(v_2)=7\rightarrow(x)/(6)+(y)/(29)=7\text{ \lparen1\rparen} \\ \\ x+y=134\rightarrow x=134-y\text{ \lparen2\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4adn7gm5peid6bx8ivq2xpg2o0i8k39adk.png)
We substitute the second equation in the first and obtain the following:
![\begin{gathered} (134-y)/(6)+(y)/(29)=7 \\ \\ ((134-y)(29)+6y)/(6\cdot29)=7 \\ \\ (3886-29y+6y)/(174)=7 \\ \\ 3886-23y=7\cdot174 \\ \\ y=(1218-3886)/(-23)=(-2668)/(-23) \\ \\ y=116\rightarrow\text{ bicycle distance} \\ \\ \text{ now, for x:} \\ \\ x=134-116 \\ \\ x=18\rightarrow\text{ running distance} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/s8hd5gxyw06riw0xqzvy44pd0sy3as5thc.png)
Therefore:
The distance of running is 18 miles and the distance by bicycle is 116 miles.