Step-by-step explanation:
We can do a diagram of triangle CDE:
The sum of the measures of the interior angles of any triangle is 180º. We can write an equation:
![\begin{gathered} m\angle C+m\angle D+m\angle E=180º \\ (4x-16)+(6x-1)+(4x-13)=180 \\ (4x+6x+4x)+(-16-1-13)=180 \\ 14x-30=180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rlqidceg7s84td8b9npo33hutfzw81xw78.png)
Solve for x:
![\begin{gathered} 14x=180+30 \\ 14x=210 \\ x=(210)/(14) \\ x=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v1axmzjsjilgbygagvi8sariojwyigyc6h.png)
And with x = 15, replace into the expression for the measure of angle C to find it:
![m\angle C=4x-16=4\cdot15-16=60-16=44º](https://img.qammunity.org/2023/formulas/mathematics/college/7k2w0q3ruqs27l9lfelnlgire0jqj4e58t.png)
Answer:
m