In the given triangle ABC
![BA=BC](https://img.qammunity.org/2023/formulas/mathematics/college/g3a4hiqact3967wspilrrlqaqbi9epxr4s.png)
Then the triangle is isosceles
In the isosceles triangle, the base angles are equal
Since
Since m
In any triangle the sum of angles is 180 degrees, then
![m\angle A+m\angle B+m\angle C=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/vpuqwvcmc5cao0qrmaa194etmarz813kwz.png)
Substitute angles A and C by 62
![\begin{gathered} 62+m\angle B+62=180 \\ \\ m\angle B+124=180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wepgz48lwhtz5h4lcp1cnr9q4plnyoawcd.png)
Subtract 124 from both sides
![\begin{gathered} m\angle B+124-124=180-124 \\ \\ m\angle B=56^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dy095a2cnrzsl48a9qeai5zjz0pj9nmkqf.png)
The answer is b