28.1k views
2 votes
How to find the inverse of the matrix Question number 19

How to find the inverse of the matrix Question number 19-example-1

1 Answer

3 votes

Okay, here we have this:

We need to find the inverse of the matrix, let's do it:


\begin{bmatrix}{2} & {4} & {1} \\ {-1} & {1} & {-1} \\ {1} & {4} & {0}\end{bmatrix}

For that we are going to make the augmented form with the identity matrix and convert the original matrix into the identity:


\begin{gathered} \begin{pmatrix}2 & 4 & 1 & | & 1 & 0 & 0 \\ -1 & 1 & -1 & | & 0 & 1 & 0 \\ 1 & 4 & 0 & | & 0 & 0 & 1\end{pmatrix} \\ =\begin{pmatrix}2 & 4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -(1)/(2) & | & (1)/(2) & 1 & 0 \\ 1 & 4 & 0 & | & 0 & 0 & 1\end{pmatrix}\text{ }R_2\leftarrow R_2+(1)/(2)R_1 \\ =\begin{pmatrix}2 & 4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -(1)/(2) & | & (1)/(2) & 1 & 0 \\ 0 & 2 & -(1)/(2) & | & -(1)/(2) & 0 & 1\end{pmatrix}\text{ }R_3\leftarrow R_3-(1)/(2)R_1 \\ =\begin{pmatrix}2 & 4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -(1)/(2) & | & (1)/(2) & 1 & 0 \\ 0 & 0 & -(1)/(6) & | & -(5)/(6) & -(2)/(3) & 1\end{pmatrix}R_3\leftarrow R_3-2/3R_2 \\ =\begin{pmatrix}2 & 4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -(1)/(2) & | & (1)/(2) & 1 & 0 \\ 0 & 0 & 1 & | & 5 & 4 & -6\end{pmatrix}R_3\leftarrow-6R_3 \\ =\begin{pmatrix}2 & 4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & 0 & | & 3 & 3 & -3 \\ 0 & 0 & 1 & | & 5 & 4 & -6\end{pmatrix}R_2\leftarrow R_2+(1)/(2)R_3 \\ =\begin{pmatrix}2 & 4 & 0 & | & -4 & -4 & 6 \\ 0 & 3 & 0 & | & 3 & 3 & -3 \\ 0 & 0 & 1 & | & 5 & 4 & -6\end{pmatrix}R_1\leftarrow R_1-R_3 \\ =\begin{pmatrix}2 & 4 & 0 & | & -4 & -4 & 6 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & 5 & 4 & -6\end{pmatrix}R_2\leftarrow(1)/(3)R_2 \\ =\begin{pmatrix}2 & 0 & 0 & | & -8 & -8 & 10 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & 5 & 4 & -6\end{pmatrix}R_1\leftarrow R_1-4R_2 \\ =\begin{pmatrix}1 & 0 & 0 & | & -4 & -4 & 5 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & 5 & 4 & -6\end{pmatrix}R_1\leftarrow(1)/(2)R_1 \end{gathered}

Finally the inverse is on the right side of the augmented matrix:


=\begin{pmatrix}-4 & -4 & 5 \\ 1 & 1 & -1 \\ 5 & 4 & -6\end{pmatrix}

User Kawtousse
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories