Given the data set:
![\lbrace57,53,53,71,73,57,61,58,78,64,54,69,56,58,49,56,53,52,82,62,61,60,71,75,60\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/ib1yedtvffc6mzjp3gqusw3ganli17rdhb.png)
• You can find the Mean by adding all the values and dividing the sum by the number of values in the data set:
![Mean=(57+53+53+71+73+57+61+58+78+64+54+69+56+58+49+56+53+52+82+62+61+60+71+75+60)/(25)](https://img.qammunity.org/2023/formulas/mathematics/college/29g9e6u5slx0ds14ory08cv23f3edsul51.png)
![Mean\approx61.72](https://img.qammunity.org/2023/formulas/mathematics/college/b8eteuuud7bxrkvcnzgfbr6hv8hft8ixyo.png)
• By definition the term for the third quartile can be found with this formula:
![(3)/(4)(n+1)](https://img.qammunity.org/2023/formulas/mathematics/college/r705sq8f341m2mq2n65teoeoe937wwqrph.png)
Where "n" is the number of observations.
In this case:
![n=25](https://img.qammunity.org/2023/formulas/mathematics/college/rsvxjz4qzycti4t5ugarf47qvag2b5k2a5.png)
Then:
![(3)/(4)(25+1)\approx19.5](https://img.qammunity.org/2023/formulas/mathematics/college/avavguj4gjjd8w7f8cjrjv7csso5z7as9o.png)
Since it is an integer, you get that the position of the terms is:
![Q_3=(69+71)/(2)=70](https://img.qammunity.org/2023/formulas/mathematics/college/902x3ifjqu92vtlo69v8dyyu6qp9attd2h.png)
Because, when you order the data set, 69 is the 19th value and 71 is the 20th value. Then, the third quartile is the average between them:
![\lbrace49,52,53,53,53,54,56,56,57,57,58,58,60,60,61,61,62,64,69,71,71,73,75,78,82\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/c2lhtwb2k5r6swk6criog6dkqjxo3kz3lp.png)
• By definition:
![IQR=Q_3-Q_1](https://img.qammunity.org/2023/formulas/mathematics/college/3ocn9vy8ovj93esjjhtill6zoweaqcatgq.png)
And the term position of the first quartile is found with:
![(n+1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/8d0zolphmzump8mxvoenrdvjpcdqfdmpmy.png)
You get:
![(25+1)/(4)=6.5](https://img.qammunity.org/2023/formulas/mathematics/college/p2s9ugqud6dqky354drosey5riz3j75ttg.png)
Therefore, you can determine that:
![Q_1=(54+56)/(2)=55](https://img.qammunity.org/2023/formulas/mathematics/college/rc88jiy7qrc58bf84skpqycvgm3aifeybl.png)
Then:
![IQR=70-55=15](https://img.qammunity.org/2023/formulas/mathematics/college/285w2zfvvd4ip1q58vscm2l6np3eoyanna.png)
• By definition, the Five-Number Summary is:
- The minimum value:
![Minimum=49](https://img.qammunity.org/2023/formulas/mathematics/college/jot4s9olxaj0y6spzn2au0dyip8ir9eoua.png)
- The first quartile:
![Q_1=55](https://img.qammunity.org/2023/formulas/mathematics/college/b7vgujefv250gc2vs5d6sizht9y3p1ywgx.png)
- The median:
![Median=60](https://img.qammunity.org/2023/formulas/mathematics/college/gp1vo2z4vzgelww42g6r50pidu50tixc1n.png)
- The third quartile:
![Q_3=70](https://img.qammunity.org/2023/formulas/mathematics/college/e4cfgu2t4rdb0zed7wzqeapc0u0u0fnhtp.png)
- The maximum value:
![Maximum=82](https://img.qammunity.org/2023/formulas/mathematics/college/f09bm8stwglmql034wr6sbsk7dufawpzhd.png)
Hence, the answers are:
• Mean:
![Mean\approx61.72](https://img.qammunity.org/2023/formulas/mathematics/college/b8eteuuud7bxrkvcnzgfbr6hv8hft8ixyo.png)
• IQR:
![IQR=15](https://img.qammunity.org/2023/formulas/mathematics/college/7u2eo6htuayvq7izhb100jno4fpz0i6azp.png)
• Five-Number Summary:
![Minimum=49](https://img.qammunity.org/2023/formulas/mathematics/college/jot4s9olxaj0y6spzn2au0dyip8ir9eoua.png)
![Q_1=55](https://img.qammunity.org/2023/formulas/mathematics/college/b7vgujefv250gc2vs5d6sizht9y3p1ywgx.png)
![Median=60](https://img.qammunity.org/2023/formulas/mathematics/college/gp1vo2z4vzgelww42g6r50pidu50tixc1n.png)
![Q_3=70](https://img.qammunity.org/2023/formulas/mathematics/college/e4cfgu2t4rdb0zed7wzqeapc0u0u0fnhtp.png)
![Maximum=82](https://img.qammunity.org/2023/formulas/mathematics/college/f09bm8stwglmql034wr6sbsk7dufawpzhd.png)
• Third quartile:
![Q_3=70](https://img.qammunity.org/2023/formulas/mathematics/college/e4cfgu2t4rdb0zed7wzqeapc0u0u0fnhtp.png)