84.9k views
5 votes
Hi can you help me find the correct answer to this?

Hi can you help me find the correct answer to this?-example-1

1 Answer

5 votes

x=3 , 8

Step-by-step explanation

remember the square of a binomyal


(a\pm b)^2=a^2\pm2ab+b^2

Step 1

given


√(x+1)\text{ =x-5}

we need to isolate x, so

a) rise each side to power 2


\begin{gathered} √(x+1)\text{ =x-5} \\ (√(x+1))\text{ }=(x-5)^2 \\ x+1=x^2-2*5*x+5^2 \\ x+1=x^2-10x+25 \\ subtrac\text{ x in both sides} \\ x+1-x=x^2-10x+25-x \\ 1=x^2-11x+25 \\ subtract\text{ 1 in both sides} \\ 1-1=x^2-11x+25-1 \\ hence \\ x^2-11x+24=0 \end{gathered}

Step 2

solve the quadratic equation:

b) use the quadratic formula


\begin{gathered} it\text{ says} \\ for\text{ ax}^2+bx+c=0 \\ the\text{ solution for x is} \\ x=(-b\pm√(b^2-4ac))/(2a) \end{gathered}

so

i)let


\begin{gathered} ax^2+bx+c=x^2-11x+24 \\ so \\ a=1 \\ b=-11 \\ c=24 \end{gathered}

ii) now, replace in the formula


\begin{gathered} x=(-b\pm√(b^2-4ac))/(2a) \\ x=(-(-11)\pm√(-11^2-4(1)(24)))/(2(1)) \\ x=(11\pm√(121-96))/(2) \\ x=(11\pm√(25))/(2)=(11\pm5)/(2) \\ so \\ x_1=(11+5)/(2)=(16)/(2)=8 \\ x_2=(11-5)/(2)=(6)/(2)=3 \end{gathered}

therefore, the solutions are x= 3 and x= 8

so, the answer is

x=3 , 8

I hope this helps you

User Mark Veltzer
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.