Given:
Population =300000
Growth rate = 4.5 %.
time = 14 years.
consider the exponential growth equation.
![y=a(1+r)^t](https://img.qammunity.org/2023/formulas/mathematics/high-school/hql0z55j78opswz590g5wjn3nhxasndtzg.png)
where a is the initial value and r=growth rate.
Let y be the number of population after t years.
Substitute a=300000, r=4.5/100. t-14 in exponential growth equation, we get
![y=300000(1+(4.5)/(100))^(14)](https://img.qammunity.org/2023/formulas/mathematics/college/u5fpusqn96ktw76g74byk1y67v304emj62.png)
![y=300000((100)/(100)+(4.5)/(100))^(14)](https://img.qammunity.org/2023/formulas/mathematics/college/2b2r328kxqk3lns3b60qndnwjjdfru647o.png)
![y=300000((104.5)/(100))^(14)](https://img.qammunity.org/2023/formulas/mathematics/college/vonf9834uc8dxtxdkqjifufi5nd7rx3xjd.png)
![y=300000(1.045)^(14)](https://img.qammunity.org/2023/formulas/mathematics/college/vmwft5iiw65pux8ofv9i7qov0sitkxb3w0.png)
![y=555583.476485](https://img.qammunity.org/2023/formulas/mathematics/college/qcnuh3aofryavjimgz3r0zxmwe7ditpcic.png)
Hence the population after 14 years is 555584 people.