The given fractions are,
![(x^2)/(2x-1),\text{ }(x+1)/(x+13)](https://img.qammunity.org/2023/formulas/mathematics/college/ykok4bw4gctbukdd0yp3ovqvptmybyh04p.png)
The LCD of fractions is the least common multiple of the denominators.
So, the LCD of the above fractions is,
![(2x-1)(x+13)](https://img.qammunity.org/2023/formulas/mathematics/college/isv4s2wiibgpjo8khp1stniiavipequow3.png)
Multiplying the numerator and the denominator of the fraction by a common term does not change the fraction.
So, the first fraction can be expressed in terms of the LCD as,
![(x^2)/(2x-1)=(x^2(x+13))/((2x-1)(x+13))](https://img.qammunity.org/2023/formulas/mathematics/college/gs20z38bm8ihexy80kgx5w4ff65y6j8lui.png)
The second fraction can be expressed in terms of the LCD as,
![\frac{x+1_{}^{}}{x+13}=((x+1)(2x-1))/((2x-1)(x+13))](https://img.qammunity.org/2023/formulas/mathematics/college/u82qm2tqg7vcgpqe8xloezmsxvkb9w0xod.png)