Given:
The standard deviation are given as,
![\begin{gathered} \sigma_(m_1)=\text{ 3.868} \\ \sigma_(m_2)\text{ = 2.933} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/49qielvpe07869hup315beqvrzdfkdt9hb.png)
Required:
The standard deviation of the sample mean differences.
Step-by-step explanation:
The formula for the deviation of the sample mean difference is given as,
![\begin{gathered} \sigma_(m_1)-\text{ }\sigma_(m_2)\text{ = }\sqrt{(\sigma_1^2)/(n_1)+(\sigma_2^2)/(n_2)} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b041t7utcoph0zxfnl7sfzsmsfi32fomzh.png)
Substituting the values in the above formula,
![\begin{gathered} \sigma_(m_1)-\text{ }\sigma_(m_2)\text{ = }\sqrt{(3.868^2)/(n_1)+(2.933^2)/(n_2)} \\ \sigma_(m_1)-\text{ }\sigma_(m_2)\text{ = }\sqrt{(14.9614)/(n_1)+(8.6025)/(n_2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/akjz9d1d7t7bijm3c39cgwgq296562nkct.png)
Answer:
Thus the required answer is,
![\sigma_(m_1)-\text{\sigma}_(m_2)=\sqrt{\frac{\text{14.9614}}{n_1}+\frac{\text{8.6025}}{n_2}}](https://img.qammunity.org/2023/formulas/mathematics/college/3y9g10mg4zdthegnqmrklketd3s35dtl48.png)