In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data:
equilateral triangle:
side = 7x
circle:
radius = 4r
Step 02:
area:
a = circle area - triangle area
triagle area:
triagle area = (b * h) / 2
b = 7x
h:
![\begin{gathered} (7x)^2=h^2+((7x)/(2))^2 \\ 49x^2=h^2+(49x^2)/(4) \\ h^2=49x^2-(49x^2)/(4)=(147x^2)/(4) \\ h\text{ = }\sqrt[]{(147x^2)/(4)\text{ }}=6.06x=6.1x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/opvz1xd8y1e4vkjou8s3vfom9a7x9w7nqd.png)
h = 6.1x
![\text{triangle area = }(7x\cdot6.1x)/(2)=(42.7x^2)/(2)=21.35x^2](https://img.qammunity.org/2023/formulas/mathematics/college/oweq52gq7naubedquu0x4lgn35num8v5a7.png)
circle area:
circle area (r) = π r² = π (4r)² = 16 π r²
a = circle area - triangle area
a = 16 π r² - 21.35x²
The answer is:
a = 16 π r² - 21.35x²