Answer:
The equation parallel to the given equation and passing through the point (8, 3) is:
![y\text{ = }(5)/(2)x\text{ - 17}](https://img.qammunity.org/2023/formulas/mathematics/college/cmqmh44m6gutsu9r4hp4ci7sig46p63kde.png)
The equation perpendicular to the given equation and passing through the point (8, 3) is:
![y\text{ = }(-2)/(5)x\text{ + }(31)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/ci8zehfjlhhgeeoyugkw8kcus52qvqv2is.png)
Explanations:
The equation of the line parallel to the line y = mx + c and passing through the point (x₁, y₁) is given as:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
The equation of the line perpendicular to the line y = mx + c and passing through the point (x₁, y₁) is given as:
![y-y_1\text{ = }(-1)/(m)(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/wksc8pu13a0831f0b5k54ctdi6xkoqxlec.png)
Now, for the equation:
![\begin{gathered} y\text{ = }(5)/(2)x\text{ - 7} \\ m\text{ = }(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ltiy1t1frwbzl9flonw51t4s8vu6wunrq.png)
The line parallel to the equation and passing through the point (8, 3) will be:
![\begin{gathered} y\text{ - 3 = }(5)/(2)(x\text{ - 8)} \\ y\text{ - 3 = }(5)/(2)x\text{ - 20} \\ y\text{ = }(5)/(2)x\text{ - 20 + 3} \\ y\text{ = }(5)/(2)x\text{ - 17} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/71lrz4dn0umrftjmej0tvoacid2ea10pc1.png)
The line perpendicular to the given equation and passing through the point (8, 3) will be:
![\begin{gathered} y\text{ - 3 = }(-2)/(5)(x\text{ - 8)} \\ y\text{ - 3 = }(-2)/(5)x\text{ + }(16)/(5) \\ y\text{ = }(-2)/(5)x\text{ + }(16)/(5)+3 \\ y\text{ = }(-2)/(5)x\text{ + }(31)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svqseqw4udlv53hlg8xarulgq1kk49q6n6.png)