Write a function with vertical asymptote x=4, horizontal asymptote y=1, y intercept at (0,2).
A possible function can be express as:
![f(x)=(x-8)/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/n2gjk40ns551i7fskj9x09igtwzfld9sy8.png)
Let's prove that this function fulfils our conditions. Let's start with the y-intercept, we know that this happens when x=0, then we have:
![f(0)=(0-8)/(0-4)=2](https://img.qammunity.org/2023/formulas/mathematics/college/6bbl5x0ipah0n1mjgypoot2w4slbncejzt.png)
Hence the y-intercept is at (0,2).
Now, we know that a rational function has horizontal asymptote y=b if:
![\begin{gathered} \lim_(x\to\infty)f(x)=b \\ \text{ or } \\ \lim_(x\to-\infty)f(x)=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ax466f22sa5h8kwwt8xboht00pd3yszezp.png)
Let's find these limits:
![\begin{gathered} \lim_(x\to\infty)(x-8)/(x-4)=\lim_(x\to\infty)((x)/(x)-(8)/(x))/((x)/(x)-(4)/(x)) \\ =\lim_(x\to\infty)(1-(8)/(x))/(1-(4)/(x)) \\ =(1-0)/(1-0) \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t0l0ivkrlyf31u7g2trfkrgt7dcidai7so.png)
and:
![\begin{gathered} \lim_(x\to-\infty)(x-8)/(x-4)=\lim_(x\to-\infty)((x)/(x)-(8)/(x))/((x)/(x)-(4)/(x)) \\ =\lim_(x\to-\infty)(1-(8)/(x))/(1-(4)/(x)) \\ =(1-0)/(1-0) \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vq4gx00470ditqqqivdd215p55m0g5e9qx.png)
This means that we have a horizontal asymptote y=1 as we wanted.
Now, a rational function has vertical asymptote at x=a if:
![\begin{gathered} \lim_(x\to a^-)f(x)=\pm\infty \\ \text{ or } \\ \lim_(x\to a^+)f(x)=\pm\infty \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/du1dnm39nccvlwgayfznpgiu9vwyw917l4.png)
to determine the value of a we need to look where the function is not defined, that is, the values which make the denominator zero, in this case we have:
![\begin{gathered} x-4=0 \\ x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4mxvh2o7wlao6fwj0dclptyu8no67ycyzh.png)
Then we need to find the limits:
![\begin{gathered} \lim_(x\to4^-)(x-8)/(x-4) \\ \text{ and } \\ \lim_(x\to4^+)(x-8)/(x-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s3pxnr3zmjbhc3jjuf6qcrbnb3s292k5m3.png)
Now, if we approach the value x=4 from the left we notice that as x gets closer to 4 the function gets bigger and bigger, for example:
![f(3.9999)=(3.9999-8)/(3.9999-4)=400001](https://img.qammunity.org/2023/formulas/mathematics/college/jxhs1jgwmvqa3zc8qhmn369se2b2hqbkq9.png)
if we follow this procedure, we conclude that:
![\lim_(x\to4^-)(x-8)/(x-4)=\infty](https://img.qammunity.org/2023/formulas/mathematics/college/jre4pdub28qeefoktdvu5opwtl6bdzr48o.png)
Similarly, if we approach x=4 from the right the function gets smaller and smaller, for example:
![f(4.0001)=(4.0001-8)/(4.0001-4)=-39999](https://img.qammunity.org/2023/formulas/mathematics/college/def2uz55imh05c62gzpdym7xt1qnui37mr.png)
Then we can conclude that:
![\lim_(x\to4^+)(x-8)/(x-4)=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/kepakldiftw1zdzgnuklidpzmyzctnd3yi.png)
Hence, we conclude that the function we proposed has a vertical asymptote x=4 like we wanted.
the properties we gave can be seen in the following graph: