87.3k views
5 votes
What is the distance between (4, 3) and (9, 15) on the coordinate plane? Select two that apply. 13 units V 169 units V144 units 12 units 5 units

1 Answer

6 votes

\begin{gathered} \sqrt[]{169} \\ \text{and} \\ 13 \end{gathered}

Step-by-step explanation

the distance between 2 points P1 and P2 is given by:


\begin{gathered} \text{distance}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \end{gathered}

Step 1

Let

P1=(4,3)

P2=(9,15)

replace


\begin{gathered} \text{distance}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{distance}=\sqrt[]{(9-4)^2+(15-3)^2} \\ \text{distance}=\sqrt[]{(5)^2+(12)^2} \\ \text{distance}=\sqrt[]{25+144^{}} \\ \text{distance}=\sqrt[]{169} \\ \text{also} \\ \text{distance}=13 \end{gathered}

I hope this help you

User Tranvutuan
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories