Answer:
y = 2, y = -2, y = i √11, y = - i √ 11
Step-by-step explanation:
To solve the equation for y, we first make the substitution x = y^2. Doing this we write

The above can be written as

Which gives two equations

Substituting back x = y^2 gives
![\begin{gathered} y^2-4=0\rightarrow y=-2,y=2 \\ x^2+11=0\rightarrow y=i\sqrt[]{11},y=-i\sqrt[]{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vj58f0lt3klbw1upbp7qmy7cjix65jbr2p.png)
Hence, to summarize, the solution to the equation is
![\begin{gathered} y=-2,y=2 \\ y=i\sqrt[]{11},y=-i\sqrt[]{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pcz58titwpyldire3zqviqxax95c11aj5b.png)