150k views
4 votes
3 373,Consider the complex number z =+22What is 23?Hint: z has a modulus of 3 and an argument of 120°.Choose 1 answer:А-2727-13.5 +23.41-13.5 - 23.41

3 373,Consider the complex number z =+22What is 23?Hint: z has a modulus of 3 and-example-1
User Edsandorf
by
3.4k points

1 Answer

3 votes

To answer this question, we can proceed as follows:


z=-(3)/(2)+\frac{3\sqrt[]{3}}{2}i^{}\Rightarrow z^3=(-(3)/(2)+\frac{3\sqrt[]{3}}{2}i)^3
(-(3)/(2)+\frac{3\sqrt[]{3}i}{2})^3=(\frac{-3+3\sqrt[]{3}i}{2})^3=\frac{(-3+3\sqrt[]{3}i)^3}{2^3}

We applied the exponent rule:


((a)/(b))^c=(a^c)/(b^c)

Then, we have:


\frac{(-3+3\sqrt[]{3}i)^3}{2^3}=\frac{(-3+3\sqrt[]{3}i)^3}{8}

Solving the numerator, we have:


(a+b)^3=a^3+b^3+3ab(a+b)


(-3+3\sqrt[]{3}i)^3=(-3)^3+(3\sqrt[]{3}i)^3+3(-3)(3\sqrt[]{3}i)(-3+3\sqrt[]{3}i)
-27+81\sqrt[]{3}i^3-27\sqrt[]{3}i(-3+3\sqrt[]{3}i)
-27+81\sqrt[]{3}i^3+81\sqrt[]{3}i-27\cdot3\cdot(\sqrt[]{3})^2\cdot i^2
-27+81\sqrt[]{3}i^2\cdot i+81\sqrt[]{3}i-81\cdot3\cdot(-1)
-27+81\sqrt[]{3}(-1)\cdot i+81\sqrt[]{3}i+243
-27-81\sqrt[]{3}i+81\sqrt[]{3}i+243
-27+243=216

Then, the numerator is equal to 216. The complete expression is:


=\frac{(-3+3\sqrt[]{3}i)^3}{8}=(216)/(8)=27

Therefore, we have that:


z^3=(-(3)/(2)+\frac{3\sqrt[]{3}}{2}i)^3=27

In summary, therefore, the value for z³ = 27 (option B).

3 373,Consider the complex number z =+22What is 23?Hint: z has a modulus of 3 and-example-1
User Siki
by
3.4k points