find the 12th term of the geometric sequence 1,3,9,...
we have
a1=1 ------> first term
a2=3
a3=9
Find the value of r (common ratio)
we have that
a2/a1=3/1=3
a3/a2=9/3=3
so
the common ratio is
r=3
we know that the general equation for a geometric sequence is
![a_n=a_1\cdot r^((n-1))](https://img.qammunity.org/2023/formulas/mathematics/college/sej8iqin8ae7ox6ds0bs6dn44c02qf3lin.png)
we have
a1=1
r=3
substitute
![\begin{gathered} a_n=1\cdot3^((n-1)) \\ a_n=3^((n-1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qcsrqxaesnocj58lnlwr4c41qsgkox98sv.png)
Find the 12th term
so
For n=12
substitute in the equation
![\begin{gathered} a_(12)=3^((12-1)) \\ a_(12)=3^((11)) \\ a_(12)=177,147 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l5c8mezjl96vu3y6yopzbp3eacf3b5kfuk.png)
therefore
the answer is
177,147