Answer:
![\left(x-(7)/(2)\right)^2+\left(y+(7)/(2)\right)^2=(25)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/owzqbhz5rdckq6xql8xolg9536y5nh62fg.png)
Explanation:
![\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n9wpm8u2dnhq7nvdku349tmts7e6f6wkbi.png)
Given endpoints of the diameter of the circle:
- (x₁, y₁) = A (7, -3)
- (x₂, y₂) = B (0, -4)
To find the center of the circle, substitute the given endpoints into the midpoint formula:
![\begin{aligned} \implies \textsf{Midpoint} & =\left((0+7)/(2),(-4-3)/(2)\right)\\& =\left((7)/(2),-(7)/(2)\right)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e5pax4jh930t4dj7214geasjn2p4szk8yj.png)
![\boxed{\begin{minipage}{4 cm}\underline{Equation of a circle}\\\\$(x-a)^2+(y-b)^2=r^2$\\\\where:\\ \phantom{ww}$\bullet$ $(a, b)$ is the center. \\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a14g8x0k21744p02xwico8x0nmp8w3bbzv.png)
Substitute the found center and one of the given points (0, -4) into the equation and solve for r²:
![\implies \left(0-(7)/(2)\right)^2+\left(-4-\left(-(7)/(2)\right)\right)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/w9yhxnif18fg3kfugzgq131v0jm31c1cev.png)
![\implies \left(-(7)/(2)\right)^2+\left(-(1)/(2)\right)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ratqnoc4hqkgux0kjbvkmdz3v08y6p12x7.png)
![\implies (49)/(4)+(1)/(4)=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/s0mpzy4wl3ynblkun2f3djmtt4r7np2ivq.png)
![\implies (50)/(4)=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/mxmrvimc9gjymtqnd0umo6h6tvo21e0ly2.png)
![\implies r^2=(25)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/x807vpmk0o1coojntlnoh2uryk6kddw0js.png)
Therefore, the equation of the circle is:
![\implies \left(x-(7)/(2)\right)^2+\left(y+(7)/(2)\right)^2=(25)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/jqa2o907g90c3cmlz2t0wrpz2bujy31qw6.png)
The graph of the circle is attached.