Given:
The mass of the spheres is m = 4.982 g
The distance between the center of spheres is d = 3.173 cm
The acceleration is a = 258.312 m/s^2.
To find the magnitude of charge in micro Coulomb on each sphere.
Step-by-step explanation:
According to Newton's second law, the force will be
![F\text{ =ma}](https://img.qammunity.org/2023/formulas/physics/college/5llwzwh06erhbbo5l25my8mu0d035gy38c.png)
According to Coulomb's law, the force will be
![F=(kq^2)/(r^2)](https://img.qammunity.org/2023/formulas/physics/college/ympc5khqj61fdli9oouj07mcdd5x0ivlir.png)
Here, k is the Coulomb's constant whose value is
![k=9*10^9\text{ N m}^2\text{ /C}^2](https://img.qammunity.org/2023/formulas/physics/high-school/rtmduesmuubnveel7x3l3lsq8dgs1533o4.png)
On equating the forces, the charge will be
![\begin{gathered} ma=(kq^2)/(r^2) \\ q=\sqrt{(mar^2)/(k)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/akcxlpevp6h4l5sz8whnerz1r35we1bh14.png)
On substituting the values, the magnitude of charge will be
![\begin{gathered} q=\sqrt{((4.982*10^(-3))*258.312*(3.173*10^(-2))^2)/(9*10^9)} \\ =3.79\text{ }*10^(-7)\text{ C} \\ =0.379\text{ }*10^(-6)\text{ C} \\ =0.379\text{ }\mu C \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/oi5sz8xs3fybuu8d5bt3qzgg5qggul9fur.png)
The magnitude of the charge of each sphere is 0.379 microCoulomb