The perimeter of rectangle A is 10 cm
Perimeter of A = 2x+2y=10 cm, then:
Perimeter of A = 2(x+y)=10
Perimeter of A = x+y=5
We also know that the area of A= xy= 6 cm²
Then, we can admit x=3 and y=2.
Both rectangles are similar.
![\frac{x_a}{y_a_{}}=(x_b)/(y_b)](https://img.qammunity.org/2023/formulas/mathematics/college/vlm8xm9gk67oyr2fbu6hhp0eupj80z9miy.png)
![\begin{gathered} (3)/(2)=(x_b)/(y_b) \\ x_b=\frac{3y_b}{2_{}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6em99bb6c31tgf85j3ul5oxr55z0dsqgcz.png)
Perimeter of B
![\begin{gathered} 2x_b+2y_b=20 \\ x_b+y_b=10 \\ (3y_b)/(2)+y_b=10 \\ 3y_b+2y_b=20 \\ 5y_b=20 \\ y_b=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sig3bo4zq8xfg1yul5ykc07r3mhk77t108.png)
![\begin{gathered} x_b=(3y_b)/(2) \\ x_b=(3\cdot4)/(2) \\ x_b=(12)/(2) \\ x_b=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pom6wmdpjllojg8fzwsidl53ttnvq6mf5f.png)
Therefore
Area of B = 4 x 6 cm² = 24 cm²