Decomposing the tension into vertical and horizontal components, and considering vertical force equilibrium, the tension in the supporting wire is approximately 679.94 N, maintaining stability in the system with a hanging sign weighing 215 N on a 175 N beam.
1. Decompose Tension into Components:
![\( T_x = T \cdot \cos(35^\circ) \)\\ \( T_y = T \cdot \sin(35^\circ) \)](https://img.qammunity.org/2023/formulas/physics/college/h4yp5ftzaw2633dzf70ajqrjmcuni3b46i.png)
2. Vertical Force Equilibrium:
![\( T_y - 175 \, \text{N} - 215 \, \text{N} = 0 \)\\ \( T_y - 390 \, \text{N} = 0 \)\\ \( T_y = 390 \, \text{N} \)](https://img.qammunity.org/2023/formulas/physics/college/qfwyqljlhnrk1gs2xe17coq5ld5kmy1s45.png)
3. Tension in the Wire:
![\( T \cdot \sin(35^\circ) = 390 \, \text{N} \)\\ \( T \cdot 0.57358 = 390 \, \text{N} \)\\ \( T = \frac{390 \, \text{N}}{0.57358} \)\\ \( T \approx 679.94 \, \text{N} \)](https://img.qammunity.org/2023/formulas/physics/college/fs1xw65qjq8hwdg952c2d0lc4r4zifc11f.png)
Therefore, the tension in the supporting wire is approximately
.