29.6 °
Step-by-step explanation
we have a right triangle( a triangle with an angle of 90°), so we can use a trigonometric function
so
Step 1
a) Let
![\begin{gathered} \text{angle}=\text{ ?} \\ \text{ hypotenuse( the longest side)= 23} \\ adjacent\text{ side= }20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dnqzfo6zvm847wl4s0ek0ayu07zfnkg45q.png)
so, we need to use a function that relates those values, it is
![\begin{gathered} \cos \emptyset=\frac{adjacen\text{t side}}{\text{hypotenuse }} \\ \text{where }\emptyset\text{ is the angle} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/suo4zw81g6yvefhzg4ff5kd42ifhje96iz.png)
b) replace the values in the function and solve for the angle
![\begin{gathered} \cos \emptyset=\frac{adjacen\text{t side}}{\text{hypotenuse }} \\ \cos \text{ ? =}(20)/(23) \\ \text{ inverse cosine in both sides } \\ \cos ^(-1)(^{}\cos \text{ ?) =}\cos ^(-1)((20)/(23)) \\ \text{ ? = }29.59\text{ \degree} \\ \text{rounded to 10th} \\ \text{ ? = }29.6\text{ \degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vntimi1ahjd4zh7m12qt20zsl08niwbu9c.png)
therefore, the answer is
29.6
I hope this helps you