
To find the x-intercepts of this equation, substitute y by 0 at first

Now we need to factor this equation into 2 factors
We need 2 numbers their sum = 12 (the middle term)
But we can not find them mentally, then we will use the formula
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
a is the coefficient of x^2
b is the coefficient of x
c is the numerical term
a = 2, b = 12, c = 13
Let us substitute them in the rule to find x
![\begin{gathered} x=\frac{-12+\sqrt[]{(12)^2-4(2)(13)}}{2(2)} \\ x=\frac{-12+\sqrt[]{144-104}}{4} \\ x=\frac{-12+\sqrt[]{40}}{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i4ss2lm6qr1gfc45pw48lv6pbcmtkpruvh.png)
We will simplify the root
![x=\frac{-12+2\sqrt[]{10}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/5rxv6zh2q7e83okqonh3iwx7lfqsmpsmnc.png)
Divide up and down by 2 to simplify the fraction
![x=\frac{-6+\sqrt[]{10}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/tc2sg2d4k8b54zm0ov2sztus01wotmq3a3.png)
The 2nd root will be the same number but a different middle sign
![x=\frac{-6-\sqrt[]{10}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/6dsl5lphp5b696jkyor09ljlfkzw7433kz.png)
The x-intercepts are
![(\frac{-6+\sqrt[]{10}}{2},0)\text{and(}\frac{-6-\sqrt[]{10}}{2},0)](https://img.qammunity.org/2023/formulas/mathematics/college/idz7ato5py72ldh9l0hnl9q4q2292b90ns.png)