firstly you have to calculate the volume of the rectangular prism
volume = base area x height
since it is a rectangular prism
then the area = length x breath
length = 5cm , breath = 3cm
therefore
![\begin{gathered} \text{Area = l }* b \\ =\text{ 5 }*3 \\ =15cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/920qpewfqt38o8rw844vnvliwxmo24d07h.png)
volume = base area x height
volume = 15 x 2
![\text{volume = 15}*2=30cm^3](https://img.qammunity.org/2023/formulas/mathematics/college/ufoaajt83t1dh8ikdlm1m6tfcnzkzk8yh7.png)
![^{}\text{thus, the cameron fills }(1)/(2)cm^3](https://img.qammunity.org/2023/formulas/mathematics/college/fdpmq2f6pumvn93hly3yngffxdc094b914.png)
so the amount of the cameron fills that can fill up the prism is
![(30)/((1)/(2))\text{ = 30 }*(2)/(1)=60cm^3](https://img.qammunity.org/2023/formulas/mathematics/college/2ohowh4rdf53xpkbvvthy52ifixp9cyqs1.png)
the answer is D